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ABSTRACT
The rise of social networking services in recent years presents
new research challenges for matching users with interesting
content. While the content-rich nature of these social net-
works offers many cues on “interests” of a user such as text
in user-generated content, the links in the network, and user
demographic information, there is a lack of successful meth-
ods for combining such heterogeneous data to model interest
and relevance. This paper proposes a new method for mod-
eling user interest from heterogeneous data sources with dis-
tinct but unknown importance. The model leverages links
in the social graph by integrating the conceptual represen-
tation of a user’s linked objects. The proposed method
seeks a scalable relevance model of user interest, that can
be discriminatively optimized for various relevance-centric
problems, such as Internet advertisement selection, recom-
mendation, and web search personalization.

We apply our algorithm to the task of selecting relevant
ads for users on Facebook’s social network. We demonstrate
that our algorithm can be scaled to work with historical
data for all users, and learns interesting associations between
concept classes automatically. We also show that using the
learnt user model to predict the relevance of an ad is the
single most important signal in our ranking system for new
ads (with no historical clickthrough data), and overall leads
to an improvement in the accuracy of the clickthrough rate
prediction, a key problem in online advertising.

Categories and Subject Descriptors
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1. INTRODUCTION
Social networking services such as Facebook, Youtube,

Twitter and MySpace have attracted hundreds of millions
of users and become part of the Internet mainstream and
an important part of our daily lives. Compared to tradi-
tional interest-based online communities, social networking
services offer an additional network layer on top of user inter-
est, as they center around people and their connections [6].
Social network users do not usually state their interest ex-
plicitly, but instead make connections, including direct con-
nections with other users and groups, and implicit connec-
tions formed by interactions—such as commenting or click-
ing behavior—with user-generated content and other enti-
ties in the network, as shown in Figure 1. These connections
provide valuable information about a user’s interest, but are
typically of varying importance and quality. The ability to
infer a coherent model of users’ interests from the hetero-
geneous parts of the network has the potential to provide
personalized recommendation and more relevant advertise-
ment targeting [23, 8].

Although the ideas developed in this paper can be ap-
plied to recommendation and other content matching tasks,
we focus on the specific task of serving relevant advertise-
ments to users in a social network. The foundation of pay-
per-click advertising systems is a system for predicting the
clickthrough rate (CTR) of an ad for a given user or query.
Typically, such predictions are based on a machine learning
model that uses various hand-crafted features, and is trained
on historical click data. Features employed in current social
networking sites mainly inherit the keyword-targeting pro-
totype that is successful in search engine advertising, and
demography-targeted advertising that is prevalent in tradi-
tional brand advertising. However, the characteristics of
social networking sites are not fully exploited by these meth-
ods. On one hand, the large amounts of data about user ac-
tivity and social context are unique in social network services
and offer the opportunity for better inference of personalized
interests than traditional methods. On the other hand, it
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Figure 1: An example of user-ad-source heteroge-
neous network. Users are linked to different types
of objects. These objects typically have associated
text information. Ads are also linked to different
type of objects with supporting text. We know some
ads are clicked and some are shown but not clicked,
for a small fraction of user-ad pairs, and we need to
predict clicks for other user-ad pairs.

is nontrivial to utilize these data. First, not all the con-
tents have strong contextual relevance. For example, when
users check friends’ news or talk with friends, their intent
is usually not related to business. Thus we cannot simply
concatenate all the text from linked objects to augment a
user’s profile. Second, if we use keyword or concept match-
ing to measure the relevance independently of the targeting
problem, simply counting the exact matching concepts or
even related concepts in the taxonomy cannot capture the
latent signal—for example, an ad about Photographers1 is
better targeted to users interested in Weddings, rather than
users interested in Photography.

In this paper, we formulate and tackle the problem of rel-
evance learning for online targeting in heterogeneous social
networks. To develop a better relevance model in the con-
text of a heterogeneous social network, we propose a frame-
work for CTR prediction based on a variant vector space
model. First, for dimensionality reduction, we use seman-
tically meaningful concepts to abstract the interest of users
and the topic of ads, such as ”Cartoon Movie” and ”Mu-
sic Bands and Artists”, and thus both user and ad can be
represented by a concept vector where each component is
the weight for corresponding topic. Second, rather than a
simplified view of a friendship social graph, we use the multi-
typed networks to characterize user interaction with pages,
groups, and other entities. These nodes have text content
from which we can extract concepts, and serve as concept
sources to their linked objects. Then user interests and other
target content can be summarized from the concept classes
of linked source nodes. Finally, to quantitatively distinguish
the level of importance of different types of nodes in the
network, and to systematically capture the intuition that a
user concept may match multiple ad concepts with different
association weights, we develop a generic user model to learn

1We use capitalized phrases to represent a concept class.

the weight for heterogeneous linked sources and the associ-
ation between every pair of user concept and target concept
jointly. The model can be applied on top of any concept
extraction method.

We demonstrate a series of offline and online experiments
that validate our hypothesis: 1) our model is capable of
finding hidden associations between user concepts and ad
concepts, such as Photographers with Weddings; 2) finding
concept class associations and source importance weighting
mutually enhance each other in terms of resolving the mis-
matching between user concept space and ad concept space;
and 3) demography and keywords matching help with tar-
geting, but not as precisely as our jointly learnt user model.

2. RELATED WORK

2.1 Online Advertising and User Modeling
Online advertisement targeting and ranking have been

widely studied in the context of search-based and content-
based targeting, e.g., Google AdWords and AdSense. Search-
based targeting, or sponsored search can be thought of as
a document retrieval problem, where the ads are the “docu-
ments” to be retrieved given a search query. Content-based
targeting, a.k.a., contextual advertising, is a sister technol-
ogy to sponsored search, where the ad retrieval is based on
a webpage. Studies on such models show that the vocab-
ulary mismatch problem is critical [9, 20, 7]. Motivated
by that, we represent user interests and ads with vectors in
a space of concept classes—which is significantly lower di-
mensional than the space of possible keywords—and learn
a weighted matching function based on click history data.
There are only a few recent published studies on user-centric
targeting in the context of social network sites, perhaps due
to the lack of data from widely-used social network sites.
Bao et al. [4] proposed a influence-based diffusion model for
targeting on implicit-relationship Q&A websites with little
user-generated content. In comparison, we study a social
network site with abundant user-generated content.

In terms of modeling user interests for search and recom-
mendation systems, most works concentrate on one type of
user generated data, while on a heterogeneous social net-
work various sources can be used to analyze a user’s be-
havior. Examples include user interaction history during
web search [3], user generated tags [21], and browsing be-
havior in quasi-social networks [19]. A recent work by Wen
et al. [24] studied users in social networks where there are
multiple types of data. However, they assign each source
an empirical weight when combining them and study the in-
terest independently of the targeting task, while our model
learns the weights from history data and can optimize the
relevance measure towards different tasks.

Recent researchers also start to leverage social cues to
enhance user interest modeling. Most of them augment
the interest of one user from other users. Piwowarski and
Zaragoza [18], White et al. [25] combine the interests of other
users that visit the same page. Likewise, in collaborative fil-
tering tasks it is assumed that those who had similar opin-
ions on a set of items tend to agree again on other items [13,
14]. Konstas et al. [16] shows that incorporation of friend-
ship and social tagging can improve the performance of a
music recommendation system. Nevertheless their random-
walk-based approach suffer from the scalability issue in large
social networks. Distinct with these works, we do not ex-



plicitly reply on the friendship link to propagate interests, as
previous studies already suggest that explicit relationships
are not good indicators of the nature of user interactions[4]
and the quality of inferring user interests from their friends
varies [24]. Instead, we use links to other entity nodes to
propagate interests. These nodes include the interaction
with friends such as wallposts, as well as similar behaviors
such as liking a page or joining a group. In this way we
will not propagate the interests between one and his friends
who never have interaction, while the users who share more
similar linked objects will have more interest augmentation
to each other through the training process.

2.2 Concept Extraction
User interests and ad contents can be extracted by unsu-

pervised or supervised methods. Compared to the classification-
based methods, unsupervised topic models such as Latent
Dirichlet Allocation [5] are not restricted to a predefined set
of labels, but are harder to use and modify when working
with thousands of possible topics. With the development
of knowledge representation language [11], domain specific
ontologies can be constructed and used to label web con-
tent according to a concept taxonomy. Supervised learning
based on a reference ontology can achieve a good semantic
representation of user interests [22, 10], and has the advan-
tages that it is scalable and the results corresponding to a
predefined ontology are easy to interpret.

3. PROBLEM STATEMENT
We consider the task of predicting the clickthrough rate

for a user on a target object recommended to the user. In
our discussions, we assume the target object to be an ad.

Formally, our input is a heterogeneous networkG = (V,E).
The set of vertices V can be partitioned into user nodes V u,
ad nodes V a and their various linked source nodes: V =
V u ∪ V a ∪ Λu ∪ Λa, where Λu = ∪nu

i=1Λu
i and Λa = ∪na

j=1Λa
j

are the respective sources. Each user node vx ∈ V u can
be linked to one or more source nodes in Λu

i , 1 ≤ i ≤ nu;
each ad node vy ∈ V a can be linked to one or more source
node in Λa

j , 1 ≤ j ≤ na; and each source node vz ∈ Λu ∪ Λa

has some text associated with it. In principle we can define
source types based on both object type and link type. In
this work, we regard each type of object as a type of source,
and assume there are two types of links, positive and nega-
tive, e.g., “like”and“dislike”. The linked sources accordingly
have positive or negative contributions to the concepts of the
linked user or ad node. For some user and ad node pairs,
we know the existence of past impressions and whether the
user clicked the ad. For any given pair of user node and ad
node, our task is to predict the probability that the user will
click on the ad.

Our output will serve as a feature in a machine learning
model, to be trained with many different features. To enable
an ad ranking system to examine the relevance between any
user and any ad inside a large-scale social network in real
time, we need to represent user interest and ad content in
a concise yet semantically meaningful way allowing efficient
measure of the relevance. We use clustered concept classes
that are more precise cognitive unit than terms to summarize
a user’s interest. These concepts also serve as a common
representation for integrating information across different
sources.

Figure 2 outlines the pipeline for our relevance prediction.
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Figure 2: The pipeline of our relevance feature gen-
eration for CTR prediction and the model to learn

We first give some definitions.

• Concept Space. A concept space is a d-dimensional real
number space Rd that encodes some cognitive classifica-
tion system such as ontology. Each dimension represents
a concept class in the system. For example, in a human-
edited Web directory [2], each category in the directory
can be used as a concept class.

• Concept Vector. A concept vector is a vector in the con-
cept space defined above that represents the cognitive
property of an object. The component in each dimension
indicates how strong the object is associated with the cor-
responding concept. For example, (Movie:0.5, Soccer:0.3)
is a short representation of a sparse concept vector where
all the weights are zero except for two concepts. For
generality we allow user concept vector and ad concept
vector to be in different concept spaces.

• Concept Extraction(CE). Given a source node’s text, out-
put its concept vector c in certain concept space.

• Concept Aggregation(CA). Given a user or an ad vx, and
the set of linked source nodes Sx—for each node vi ∈ Sx,
the corresponding concept vectors are already extracted
as ci—output a concept vector c for this user or ad.

• Concept Matching(CM). Given a pair of user and ad con-
cept vector u and a, produce a real value feature f to
predict the likelihood of the user clicking the ad.

The pipeline of CE→ CA → CM allows user concept
vector and ad concept vector be extracted and aggregated
offline, and stored in high speed medium. The online feature
computation can be efficient with fast access to the concept
vector and fast vector matching algorithm. The three mod-
ules are tuned in the following manner. First, we choose a
supervised concept extraction model. Then we learn the pa-
rameters in the rest two models and test them on click data.
In this paper we focus on how to learn a good relevance
prediction model that manipulates the concept aggregation
and matching module for better CTR prediction.

4. LEARNING RELEVANCE
We first briefly describe our concept extraction method.

Then we discuss several baseline methods for relevance pre-
diction, followed by our solution.



Table 1: Examples of the text concept extraction
model used for the experiments. There are tens of
thousands of possible concepts, and so the output
concept vector is very sparse (tens of nonzero di-
mensions typically after thresholding).

Input text Sample concepts with weights

Get low cost
car insurance.

Business/Financial_Services/Insurance/
Automotive,0.36;

Home/Personal_Finance/Insurance,0.30; . . .

I am cooking
for mom to-
day.

Home/Cooking,0.20;

Home/Family/Parenting/Mothers,0.16; . . .

4.1 A Handcrafted Relevance Estimate
Learning Concepts. The task of concept extraction is to
transform given text into the most salient topics that occur
in the text. A variety of text modeling approaches are pos-
sible here, including categorization approaches that classify
text into a pre-defined ontology of topics, and topic modeling
approaches that automatically find semantically meaningful
clusters [5]. While our methods are applicable to any finite
vector representation of users and ads, for concreteness, we
present results using a categorization approach. Using la-
beled webpage data from a reference ontology, we trained
a large-vocabulary, bag-of-words based linear text classifier
that accepts an arbitrary text input, and attempts to predict
the strength of association with each label in the ontology.
We use each label as a possible concept class, and use the
predicted strength as the weight on that concept, thus trans-
forming any input text into a concept vector. This model
is not the focus of the paper, and we simply illustrate the
method by examples in Table 1.
A baseline for Relevance Prediction. Based on the out-
put of the concept extraction model above, we have a simple
method to aggregate the concept vectors and measure the
relevance between users and ads. For each user and each
ad, we can use unweighted sum of the concept vectors ex-
tracted from all linked sources. Then we compute the cosine
similarity of two concept vectors as the baseline feature for
prediction.

There are several problems with this baseline feature. First
of all, the different type of sources should have different pre-
diction power of users’ interests in ads. For example, greet-
ings between friends may not be as useful as shared links to a
movie or clicks on a previous ad. It is natural to assume that
weighted sum of the concept vector from different sources is
a better strategy for relevance inference. However, empiri-
cal assignment of source weights is not straightforward. It
is not obvious whether the group a user belongs to should
have higher weight than the posts on the wall. Not everyone
publishes status messages, but most have profiles. Different
sources have different level of quality, coverage and relevance
to business. To find the best weighting we need to learn from
the data.

Second, the cosine similarity metric needs to be improved
due to the following reasons: 1) different concept may have
different power for distinguishing the interest, e.g., top level
node Society VS. bottom level node Society/Relationships/Dating;
2) the intuition that one user concept can match multiple ad
concepts (e.g., the video game FIFA Series can match the
computer game or the sport soccer) and vice versa; and 3)
user concept space and ad concept space are not necessarily

identical. So a better measure should allow one user concept
to match different ad concepts and vice versa, and does not
require they are in the same concept space. This measure is
even harder to handcraft, but can be learnt from data.

Now we have two more improved methods, one to learn
source weights and the other to learn a better measure. A
natural question is can we combine the two to obtain an even
better model, and whether they interact with each other.
Our intuition is that better assessment of source importance
should help us find a better measure; and the better match-
ing function should also facilitate the noise reduction and
quality of integration from different sources. Based on that
intuition we develop a joint model to integrate the learning
of these two parts, and it incorporates all the above means
as special cases.

4.2 Jointly Learning Source Weights and Con-
cept Association

Based on above analysis, we add unknown parameters to
the aggregation and matching model. Our relevance model
consists of both aggregation and matching, and we will learn
the parameters for them together from training data. For
aggregation, we combine the user concept vector from each
source by weighted summation,

ux =

nu∑
i=1

∑
vj∈Λu

i ∩Sx

γu
i cj =

nu∑
i=1

γu
i sxi = UxΓu (1)

where cj is the concept vector from the node vj , Sx is the set
of source nodes linked with user vx, and γu

i is the weight for
the i-th type of user source. For simplification we let sxi =∑

vj∈Λu
i ∩Sx

cj ∈ Rdu be the sum of concept vectors from the

i-th type source. Then we have the matrix representation
UxΓu, where Γu = (γu

1 , . . . , γ
u
nu

)T and Ux = (sx1 , . . . , s
x
nu

).
Likewise the ad concept vector will be

ay =

na∑
i=1

∑
vj∈Λa

i ∩Sy

γa
i cj =

na∑
i=1

γa
i tyi = AyΓa (2)

where tyi =
∑

vj∈Λa
i ∩Sy

cj ∈ Rda , Γa = (γa
1 , . . . , γ

a
na

)T , and

Ay = (ty1 , . . . , t
y
na

). And for concept vector matching we al-

low any user concept in user concept space Rdu to match any
ad concept in ad concept space Rda , with a pairwise weight
wi,j . Formally, we have the definition for the normalized
bilinear form similarity sim as follows:

sim(ux,ay) =
1

‖ux‖ ‖ay‖

du∑
i=1

da∑
j=1

wi,jux,iay,j

=
1

‖ux‖ ‖ay‖
uT
x Way (3)

where ux,i is the i-th component of the vector ux and ay,j
is the j-th component of the vector ay. Here ‖.‖ is the L2
normal number of the vector, and W = [wi,j ]du×da is the
transformation matrix as it transforms a user concept vector
ux into ad concept space uxW ∈ Rda . W virtually defines
a bilinear form from Rdu × Rda −→ R.

Substituting Eq. (1) and Eq. (2) into Eq. (3), we have a
new relevance feature by using weighted sources and nor-
malized bilinear form similarity,

f(x, y) =
1

‖UxΓu‖ ‖AyΓa‖
ΓT

uUT
x WAyΓa (4)



Algorithm 1: Learning without regularization.

Input: number of sources nu, na, user concept space
Rdu , ad concept space Rda , learning rates
r0,r1,r2,r3,overall CTR c0.

Data: training set T = {(zx,y,Ux,Ay)}
Output: γ0

Result: W,Γu,Γa

Initialize all wi,j ← 0, 1 ≤ i ≤ du, 1 ≤ j ≤ da;
Initialize all γu

i , γ
a
j ← 1, 1 ≤ i ≤ nu, 1 ≤ j ≤ na;

Initialize γ0 ← c0;
repeat

foreach training example (zx,y,Ux,Ay) do
1.1 z ← zx,y;

Combine user sources ux ← UxΓu;
Combine ad sources ay ← AyΓa;
Compute prediction p according to Eq. (5);

1.2 Update γ0, Γu, Γa, W according to Eq. (7)-(10);

end

until convergence;

We model the probability that a user x will click on an ad
y as a generalized linear model in f(x, y). Specifically, using
the sigmoid function g(x) = 1

1+exp(−x)
, we assume:

p(user x clicks ad y) = g(f(x, y) + γ0) (5)

We can now collect historical data (xi, yi, zi) on user xi being
shown ad yi, with zi = 1 when this resulted in a click (and
zi = 0 otherwise). We learn the unknown parameters in the
model by maximizing the discriminative likelihood of this
data:

L =

N∑
i=1

log g((2zi − 1)(f(xi, yi) + γ0)) (6)

where N is the number of training examples.
We have three sets of parameters to learn: the user source

weights, the ad source weights, and the transformation ma-
trix. Since our concept extraction model can produce tens
of thousands distinct concepts, the above learning problem
can have hundreds of millions of free parameters. Using
a stochastic gradient descent algorithm, we can scan the
training data once and iteratively update the three sets of
parameters one set after another, as shown in Algorithm 1.
Given a training example (x, y, z) from training data, the
error in our prediction is given by z − p(user x clicks ad y),
or simply z−p. We can derive the following gradient descent
update rules:

∆γ0 = r0(z − p) (7)

∆Γu =
r1(z − p)
‖ux‖ ‖ay‖

UT
x (I − uxuT

x

‖ux‖2
)Way (8)

∆Γa =
r2(z − p)
‖ux‖ ‖ay‖

AT
y (I −

ayaT
y

‖ay‖2
)WTux (9)

∆W =
r3(z − p)
‖ux‖ ‖ay‖

uxaT
y (10)

where rk is the learning rate for k-th set of parameters.
Intuitive choices are r0 < r1 = r2 < r3 because the number
of parameters in 3rd set is significantly larger than the first
two sets.

Algorithm 2: Learning with an L1 regularizer

Input: # of sources nu, na, user and ad concept space
Rdu , Rda , learning rates r0,r1,r2,r3, overall
CTR c0, threshold t, regularization step m.

Data: training set T = {(zx,y,Ux,Ay)}
Output: γ0

Result: W,Γu,Γa

Initialize all wi,j ← 0, 1 ≤ i ≤ du, 1 ≤ j ≤ da;
Initialize all γu

i , γ
a
j ← 1, 1 ≤ i ≤ nu, 1 ≤ j ≤ na;

Initialize γ0 ← c0;

k ← b |T |
m
c;

Separate training set into k chunks of m examples;
repeat

for i = 1; i <= k; i+ + do
foreach (zx,y,Ux,Ay) ∈ i-th chunk do

Execute 1.1 to 1.2 in Algorithm 1;
end

end
foreach wi,j ∈W do

wi,j ← wi,j − sgn(wi,j) ∗ t;
if |wi,j | < t then //filter small weight

wi,j ← 0;
end

end

until convergence;

The optimization problem is convex if we have only one
set of parameters W; in that case it is identical to logis-
tic regression. However, when Γu and Γa are introduced
the objective function is not convex. The gradient descent
algorithm converges to a local maximum. The advantage
of our stochastic gradient descent algorithm is that a single
update is very efficient. We do not need to update all the
parameters at each iteration, but just a small fraction of re-
lated ones. Assuming the user concept vector and ad concept
vector contain lu and la concepts with nonzero weights, only
(lula+nu+na) parameters need be updated. Eq. (8) and (9)
dominate the computation time. By storing W in a big hash
table, the uT

x Way can be computed in O(lula) time. The
complexity for training on one sample is O((nu + na)lula).

The algorithm applies to any general concept vector space.
It can learn features of user-ad matching even when the user
vector and ad vector are in different spaces. For example, to
learn the relevance between user demography and ad con-
cepts, we can let each component of the user vector represent
a demography group, and learn the transformation matrix
W. Without source weight to learn, the objective function
is convex and the algorithm converges to global optimum.

We further suggest regularizing the transformation ma-
trix W for two reasons. First, such regularization has been
shown to reduce overfitting and improve generalization to
future data, especially in problems with very large numbers
of free parameters [17]. Second, the online computation for
sim is more expensive than the dot product. It takes O(lula)
time even if we assume the lookup of an element in W takes
O(1) time, while the dot product only requires O(lu + la)
time if we use the sorted sparse vector as data structure. To
optimize it we can precompute the vector uT

x W and ‖ux‖
for every user, and just do dot product for online computa-
tion. Using the L1 regularizer provides a principled way



to reduce the number of nonzeros in W.
With L1 regularization term, we now minimize the follow-

ing objective function:

L′ = −L+ C
∑
i,j

|wi,j | = −L+ C ‖W‖1 (11)

where large values of C > 0 produce fewer number of nonze-
ros in W, at the potential cost of modeling power.

As before, we can use gradient descent algorithm, with an
extra step to clip values at zero. The update rule becomes

∆W =
r3(z − p)
‖ux‖ ‖ay‖

uxaT
y − r3C ∗ sgn(W) (12)

Algorithm 2 shows the new online learning algorithm. We
partition the training data to m chunks, and do the regu-
larization after every k = N/m examples. The complexity
depends on the number of nonzero terms in W, say nw. The
running time for training on N samples with m chunks is
O(N(nu +na)lula +mnw). In our data lu, la, nu and na are
constants in the same order of magnitude as 10. nw remains
almost constant, although in the order of magnitude 106. So
the training time grows linearly with the sample size with
these constraints.

5. EXPERIMENTS
We conduct experiments on Facebook’s large-scale online

advertising system. First, we do preliminary analyses on
the baseline relevance feature, and show its potential and
problems in clickthrough prediction. Then we use our model
to learn variant relevance features, compare them and ver-
ify our assumptions with a series of performance studies and
decompositional analyses. Finally, we test the performance
of our feature when working together with other features
and show its improvement to offline clickthrough prediction.
Due to business confidentiality, we report only relevant per-
formance when showing experimental results.

5.1 Experiment Setup
Data Sets. We test our approaches on a sample of ads
clickthrough data recorded on facebook.com. We sample
historical click data anonymously from a small fraction of
the 500 million monthly active users, and use the ad impres-
sions seen by these users for training. Users are connected
with about 50 different kinds of objects that are treated
as the concept sources; ads have 4 concept sources in our
setup. We use only non-private sources from users for con-
cept extraction—e.g., chat logs or user messages are never
looked at. On average a user is connected to 80 community
pages, groups and events, and create 90 pieces of content
each month [1]. For offline analysis, we use anonymized
click data from the user sample, gathered over one week.
Since the positive examples (clicks) have low rates and can
lead to biased estimates [15], we reduce the imbalance with
a downsampling strategy similar to previous work [7].
Concept Extraction Model. For our experiments, we
use the publicly available topic hierarchy in DMOZ Open
Directory Project [2] as labeled concept classes, and use the
documents linked to each class to train a concept classifier.
The classifier is named ODP. The second concept extrac-
tion model is a pseudo concept model that uses demography
group instead of classified concepts for user concept space
(while using the ODP concepts for the ads). We use it to
show the generality of our learning algorithm. ODP has tens

of thousands concept classes in total, and DEMO contains
hundreds of demography groups, classified by country, age,
gender, education, political stand and relationship status.
For ODP, the concept vectors are high-dimensional though
sparse, leading to millions of learning parameters to be learnt
in the transformation matrix W.
Relevance Model. We have presented algorithms for
two sorts of learnt parameters: the weights Γa,Γu on each
heterogeneous source, and the transformation matrix W.
As a demonstration, we compare with our relevance feature
against various baselines:

• f: Our relevance feature using weighted sources + learnt
pseudo bilinear form similarity.

• cos: Baseline model with unweighted sources + a plain
cosine similarity feature, or in other words, a uniform
diagonal transformation matrix.

• wcos: Weighted sources + cosine similarity .

• funweighted: Unweighted sources + learnt similarity.

• fsparse: Weighted sources + transformation matrix learnt
with sparse coding.

For each baseline, the parameters (source weights or trans-
formation matrix) were relearnt by adding the relevant con-
straint to the optimization problem.

5.2 Preliminary study of Baseline Features
We first explore the value provided by the baseline fea-

ture cos in CTR prediction. Using labeled ads impression
data, we compute the baseline feature and bucketize the
impressions according to feature values. The i-th bucket
(0 ≤ i < 100) contains all the impressions with feature
value cos ∈ [ i

100
, i+1

100
). For all the impressions in each

bucket, we plot the average CTR divided by average esti-
mated CTR(ECTR), which is given by an existent rank-
ing system without cognitive relevance feature. A perfect
system should always have CTR/ECTR=1. The farther
CTR/ECTR is from 1, the more the estimate should be ad-
justed. We see from Figure 3(a) that if we use unweighted
sources and exact concept match, the feature value has a
positive correlation with CTR/ECTR. It suggests that tun-
ing up and down the CTR estimation for high and low rel-
evance feature respectively can improve the accuracy.

We repeat this for the feature cos obtained by using user
concept vectors from each single source. Figure 3(b) shows
the regression trend of CTR/ECTR with cosine similarity.
The larger slope indicates a stronger prediction power for
that source. The prediction power varies a lot from source
to source, and unweighted combination of all sources is even
worse than using a certain source in this rough estimate.
Figure 3(c) shows the coverage of the cosine similarity for
all user-ad impressions during a week. As we can see from
Figure 3(c), for each source no more than 40% of the total
impressions have at least one matching concept; even we use
all sources, only half of total impressions are“covered”in this
sense. The low coverage of nonzero similarity values provides
another motivation to improve the similarity metric beyond
the analysis in Section 4.1, while the observation that every
source has unequal power and coverage suggests we should
assign different weights to different sources.



(a) Cosine similarity pivots the correc-
tion to the estimated CTR; unweighted
summation causes noisy pivoting effect

(b) Using concept vector from different
sources to do relevance matching has dif-
ferent pivoting power

(c) Impression coverage by cosine simi-
larity values, using concept vectors from
different sources

Figure 3: Potential CTR prediction improvement by cosine similarity feature. Sources vary in the power of
relevance matching and the coverage of the ad impressions where they can suggest an exact concept match.

Table 2: logloss(*)/logloss(cos) for different rele-
vance feature, where logloss is the deviation w.r.t.
randomness. Higher values indicate that the model
does a better job in predicting clickthroughs from
input concept data.

Iteration
logloss deviation wrt randomness (ratio to cos)
wcos funweighted f fsparse

100K 2.6 4.4 5.6 5.6
200K 2.8 5.7 6.9 6.9
500K 2.7 6.7 8.1 8.0
1M 2.9 7.7 9.5 9.4
2M 2.9 8.8 10.9 10.8

test 3.8 11.2 14.3 13.7

5.3 Analysis of Our Relevance Model
This section presents the results of our learning algorithm

for source weights and transformation matrix. First we
compare the error reduction of by variant relevance models
on the same test set. We then analyze the learnt model pa-
rameters to interpret the benefits of our method, and present
interesting discoveries.

5.3.1 Learning Results
We applied the algorithms described in Section 4.2 to

clickthrough data collected anonymously over 4 days from 1
million sampled users, and test on the next 3 days. In our
implementation, we used a fixed learning rate, and chose
other algorithm parameters using validation error.

Table 2 shows the percentage logloss reduction obtained
by our algorithm (left) and various baselines, where the
logloss reduction is measured compared to random guess-
ing with the empirical click rate c0, and displayed as a ra-
tio of the logloss reduction achieved by cos. The baseline
feature cos is only slightly better than random guessing,
due to its low coverage and the lack of ability to match
distinct but related concept classes. The cosine similarity
with weighted sources (wcos) has as 4 times large logloss im-
provement as unweighted sources, but has the same coverage
problem. The normalized bilinear form similarity can solve
that problem and the logloss reduction is 10-fold larger than
cos. With our jointly learnt model, the logloss reduction can

Figure 4: Weights of concept source for two settings:
cosine similarity and normalized bilinear form simi-
larity.

be further improved, gaining a 14-fold of cos. Finally, the
learning results with sparse coding demonstrate that we can
reduce the number of nonzero parameters we need to store
by 73-80%, thus reducing the overheads of feature computa-
tion, with only a small effect (within 5%, relatively) on the
observed logloss performance. That speeds up the online
feature computation by 53 times.

5.3.2 Source Weights
The learned weights of concept sources for cosine simi-

larity and the learnt bilinear form similarity are shown in
Figure 4. Some sources are entitled nearly zero weight due
to extremely low coverage, and we omit it and only show
the major sources, 6 for users (the ads they clicked before,
the pages they are linked to, the groups they join, their pro-
file interests, status updates and wallposts) and 4 for ads
(descriptions created by the advertiser, linked pages outside
Facebook, Facebook pages and keywords for targeting).

It is not surprising that “clicked ads” rank high as a user
source, because it is the target we want to predict. We also
observe that page concepts get higher source weight than
group concepts, which might imply that the groups are not
necessarily formed by interests, while pages better reflect
the collective interests of their users. For ad concepts,
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Figure 5: Nonzero elements distribution in the
transformation matrix, y axis in log scale

the dominant source is the ad creative text, the visible part
to the user. However, the other sources add extra infor-
mation, beyond what is achievable just using the creative
text. For ads that link to a known onsite object (e.g., ads
about a music artist), the concepts for that object strongly
indicate good ad concepts. Further, important information
can be gleaned by looking at the landing page for the ad,
as well as the targeting criteria provided by the advertisers.
Taken together, these results validate our hypothesis that
important semantic information can be obtained by looking
at many heterogeneous sources of information, even though
the sources have varying levels of noise.

An interesting observation is that if we change the con-
cept matching function, the importance of sources varies
qualitatively. For example, if we only allow exact concept
matching with cosine similarity, some textual content such
as wallposts are noisy and are assigned low source weights,
indicating that exact concept match is not appropriate for
them. However, the improved similarity metric can handle
this problem by changing the association weight between the
implicit interests and related classes of ads. When we allow
matching across concept classes with our transformation ma-
trix, we are able to use all of these sources successfully.

5.3.3 Transformation Matrix
To better understand the output of the learning algorithm,

we now examine the learned transformation matrix W. The
i-th row of this matrix corresponds to the i-th user concept,
and the j-th column to the j-th ad concept. The weight
on (i, j) is used to match the i-th user concept to the j-
th ad concept. For ODP, the learned matrix is sparse and
contains 3% (which is already millions) nonzero parameter
values, with extremely skewed density in various rows and
columns of the matrix. The number of nonzero weights in
each row and each column both satisfy power-law distribu-
tions (Figure 5). On average, each row and column contains
several hundred nonzero values—which means that a user or
ad concept can potentially match several hundred concepts.

Figure 6 visualizes three 5-by-4 matrices to show the typ-
ical difference between the transformation matrix learned
with unweighted sources and weighted sources for ODP. The
4 columns divide the association into 4 groups. In each group
we fix the ad concept class, and select 5 user concept classes
whose association weight with that ad concept disagree in
the two cases. Along each column, say column A, we have
5 cells now corresponding to 5 user-ad concept pair from
(ucA1, acA) to (ucA5, acA). Each cell in the grid is dyed ac-
cording to the association weight. Dark color means positive
association and light means negative. See the table below

A B C D

1

2

3

4

5

(a) funweighted

A B C D

1

2

3

4

5

(b) f

A B C D

1

2

3

4

5

(c) f-funweighted

ac
A - Trad-
ing Card
Games

B - Rabbits
Personal
Pages

C - Shrek
Series

D - Enter-
tainment
Weblogs

uc1 Music Music Arts Music/
Styles

uc2 Christianity Society Animation
Movies Society

uc3 Movies Video
Games Humor Humor

uc4
Music/
Styles

Online
Communi-
ties

Cartoons Movies

uc5
Parenting
Weblogs

Music/
Styles

Movies Animation
Movies

Figure 6: The different transformation matrices for
unweighted sources and weighted sources. 4 groups
of user-ad concept association are shown by gray
scale, black=1, white=-1. In each group 5 associate
user concepts for a fixed ad concept are chosen.

the figures for a map. In general, the association weight
given by f looks more meaningful because it amplifies the
concepts from cleaner source and shrinks the concepts from
noisier source. For example, the interests in music have
nothing much to do with ads of trading card games or per-
sonal pages with rabbits (A1, B1, A4, B5); the interests in
animation movies and humors apparently signal a tendency
to click ads about Shrek Series (C2, C3). This suggests that
transformation matrix can be better learned if the impor-
tance of concept sources are better distinguished.

From the analyses from above two sections, we conclude
is that source weighting and non-exact matching mutually
enhance each other and an integrate combination of them
lead to higher quality of prediction. Thus our algorithm
for learning them jointly, instead of separately picking the
source weights and the matrix W, is expected to be crucial.

5.3.4 Case Study
The values in the learned transformation matrix capture

various statistical associations between the user and ad con-
cept classes. Table 3 shows some extreme cases from which
we can interpret the user-ad relevance captured by the ma-
trix. Eight categories of such cases are studied. We present
four of them due to space limitation. For each category,
we give examples from different concept extraction models.
The first category we show is about a single ad concept class
which is related to many user concept classes. Turn-based
strategic video games are associate with more than 70% user
interests, and Christianity denominations relate to almost
every demography group. Ads with such concepts have di-
versely targeted users. The other 3 categories we show in
Table 3 are about concept pairs which have very strong or
very weak associations. Strong associations could be either
positive or negative, e.g., females favor dance while males
like guitar; US people do not like Mahjongg, which is a pop-



Table 3: Interpreting the transformation matrix

Characteristics CE Example:#related concepts(%)
Ad concepts
associated with most
user concepts

ODP Turn Based Video Games: 71

DEMO
Christianity Denominations:
97

Characteristics CE Example: association weight

Strong positive
associations

ODP
Browser Based Casinos
→Facebook Platform:0.59

DEMO
Female→Dance:0.74,
Male→Guitar:0.72

Strong negative
associations

ODP
Birthdays→ Online Games:-
0.72, Arts→ Society:-0.52

DEMO
Female→Sexuality Politics:-
0.76, US → Mah Jongg:-0.46

Identical but weak
associations

ODP
US Colleges:-0.20,
Poker Personal Pages:-0.18,

Table 4: Relative variance reduction achieved when
a feature is added to test feature set. High values
for important features.

Test feature set wcos f fDEMO

F0 = user-ad relevance feature 0.12 0.34 0.008
F1 = F0 + user click bias 0.03 0.06 0.002

ular gambling game in Asia. Some user concepts have weak
association weight with the identical ad concept. That ac-
tually reflects a mismatch when we use cosine similarity—
though the concept of colleges in US can be found in many
user pages and profiles, it does not imply that these users
will like ads about colleges in US. On the contrary, such ads
will attract people who have not been in US colleges.

There are also several hard-to-interpret results, such as
the negative association between birthdays and online games.
Such results may either reflect unexpected input statistics,
or might be influenced by the imperfectness of concept ex-
traction, or bias in the training set (as the training samples
are generated by an optimized ranking system).

5.4 Cognitive Relevance for Targeting
To compare our relevance feature with previously studied

or commonly used features, such as keyword-based, clustering-
based and friendship-based relevance features, we train new
CTR prediction models using two different configurations
of features for test purpose. In one configuration (called
F0), we include all existing features in an ad ranking sys-
tem that capture inferred user-ad relevance (and are thus
meaningful even for new ads). This checks the additional
relevance value brought by our new feature. In the second
configuration (called F1), we additionally include features
that capture the bias of different users to click on ads and
the past clicking behavior of users. This helps check that
the observed gains from our relevance features cannot be
explained solely by capturing a user’s past clicks with hand-
crafted features. In each case, we experiment with training
a model with and without our new relevance feature. We
evaluate the importance of each feature by variance reduc-
tion achieved [12], and the improvement of logloss reduction
when each of them is added to the test feature sets.

Table 4 shows the approximate importance for each fea-
ture given by training and testing a CTR prediction model
over one week of click data (60% for training and 40% for

Figure 7: Improvement of logloss reduction (%) by
cognitive relevance over test feature sets F0 and F1

Figure 8: The CTR boost observed (as a ratio of
average CTR in the control group G0) when we add
our new relevance feature f and the baseline fea-
ture wcos to test feature set. The plot shows that
high values of our relevance feature are indicative of
possible clicks, and low values are indicative of poor
relevance or low clicks. The absolute values of the
y-axis labels are hidden for confidentiality.

test) for a fraction of users. Among all the inferred relevance
features between a user and an ad, the feature generated by
our learned model ranks highest and is twice as important as
the second highest. When we include user-click-bias features
in our comparison, we find our feature still outperforms all
individual non-historical features and most historical fea-
tures as well (not shown in the table). Weighted cosine
similarity has importance 1/3 and 1/2 of f in the two cases
and also ranks high, but demography relevance is of one or-
der lower importance weight. As a consequence, our feature
brings a significant improvement in logloss reduction, while
demography feature has improvement lower than 0.1% (and
thus not plotted in Figure 7). The relevance feature is espe-
cially useful for the challenge of ranking newly created ads,
for which historical click data is not available—the feature
thus forms an apriori idea of the quality of an ad for each
user. When an ad has been shown for an extended period
of time, it is possible to collect actual clickthrough informa-
tion for that ad from a large sample of users, and it is likely
that the apriori relevance feature will be less significant.

5.4.1 Online experiment results
As a final evaluation, we test the performance improve-

ment achievable by adding the new feature to the ad ranking



system that uses the existing optimized features. We ran-
domly select about 5M users and partition them into two
equal large groups. The first group G0 are targeted by the
ranking system trained with all previous features, but with-
out our new relevance features (F2); the other group G1

are targeted by a retrained ranking system with the exact
concept match feature (wcos) and our final relevance feature
(f) added. As expected, our relevance features help improve
the underlying ads metrics in these online experiments. For
example, for the impressions with our relevance feature f
larger than a relevance threshold, we observe that the CTR
is improved by at least 30% across the board.

For post-experiment analysis, we placed the new feature
values into 100 percentile buckets, such that each bucket
contains an equal number of impressions. We compare the
CTR improvement of G1 over G0 by showing observed CTR
in G1 for different values of the feature bucket as a multi-
plier of the overall CTR of G0 . For a strongly predictive
feature, we expect the feature value to be very indicative of
the actually observed CTR in the system. From Figure 8
we find that the two features we added have comparable
power when measuring relevance for those impressions with
“moderate” relevance (from 40% to 70%), but our feature is
much stronger in finding highly relevant user-ad pairs and
boosting CTR for them. Unlike the exact match similarity,
which is zero for a large percentage of impressions (more
than 30% as seen from Figure 3(c) and 8, when no exact
concept matches are found), our feature is also good at rank-
ing them and finding ad impressions that are likely to have
low-relevance, and get lower clicks than expected.

6. CONCLUSION AND FUTURE WORK
In this study we aim for relevance based targeting in large

scale social network sites. We infer user interests and ad
concepts from heterogeneous sources and links, and develop
user-ad relevance feature based on weighted matching be-
tween any pair of concept classes. We learn both the link
weights and matching matrix from click data, and find they
mutually enhance each other. Experimental results reveal
insights into user preferences in online social networks and
suggest valuable potential for more relevant targeting.

We have made some simplifying assumptions in this study
that can be relaxed in future work. For example, we do not
model temporal aspects of user-generated content, and do
not personalize weights on various sources. The method
can be applied on top of richer concept extraction models,
which should help provide a clearer signal of concept associ-
ations. Finally, for more complex models, parallel learning
algorithms and better data infrastructure can be studied to
facilitate the offline learning and online ranking.
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